شبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)
Authors
Abstract:
برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاکتور اصلی توان تولید رواناب شامل: خاک، پوشش گیاهی و رطوبت پیشین خاک می باشد. در روش ارائه شده در پژوهش حاضر، پس از بهینه سازی هدر رفت اولیه در مدل (HEC-HMS)، این عامل در شبکه عصبی مصنوعی همراه با میزان بارش به صورت جزء به جزء (Incremental) به عنوان ورودی، برای شبیه سازی مقدار دبی یا رواناب وارد گشت. مقایسه نتایج حاصل از بکارگیری شبکه عصبی مصنوعی در دو حالت با بکارگیری هدر رفت اولیه بهینه سازی شده و بدون آن، حاکی از کارایی بالای این روش و تاثیر بسیار مطلوب این عامل در افزایش دقت شبیه سازی رواناب و آبنمود سیلاب تا حدود دو برابر برای برخی وقایع می باشد.
similar resources
شبیه سازی فرآیند بارش رواناب در حوزه آبخیز ناورود با مدل ولترای مرتبه محدود و شبکه های عصبی مصنوعی
This study evaluates the performance of the linear first-order Volterra model for simulating nonlinear rainfall-runoff process. For this end, fifteen storm events over the Navrood River basin were collected. 70% and 30% of the events were used to calibrate and test the suitability of the model. Finally, the performance of the model was compared with the artificial neural networks (multilayer pe...
full textمدل سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
مدلسازی فرآیند بارش - رواناب و پیشبینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلابها، طراحی سازههای آبی در حوزههای آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیهسازی جریان روزانه در حوزه آبخیز کسیلیان با استفاده از شبکه عصبی مصنوعی و شبکه عصبی- فازی تطبیقی است. روشهای هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین دادههای ورودی و خروجی میباشند. در این تحقیق از آمار بارش، تبخیر ...
full textشبیه سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی و سیستم فازی- عصبی تطبیقی (مطالعه موردی: حوزه آبخیز حاجیقوشان)
full text
مدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
full textشبیه سازی فرآیند بارش رواناب در حوزه آبخیز ناورود با مدل ولترای مرتبه محدود و شبکه های عصبی مصنوعی
در این تحقیق، مدلسازی فرآیند غیرخطی بارش- رواناب با استفاده از مدل خطی ولترا انجام میشود. بدین منظور، دادههای بارش و رواناب همزمان مربوط به پانزده رویداد از حوزه آبخیز ناورود واقع در شمال کشور جمعآوری گردیده و بهترتیب 70 % و 30 % رویدادها برای آموزش و تست مدل بکار برده شدند. در نهایت، عملکرد مدل ولترا با شبکه عصبی پرسپترون چند لایه و با استفاده از پنج معیار عملکرد مختلف مورد مقایسه قرار گر...
full textشبیه سازی پیوسته بارش-رواناب حوضه ی شهرچای ارومیه با استفاده از مدل HEC-HMS
چکیده در محاسـبات هیدرولوژیکی یـک حوضه تعیین ارتباط بین بارش- رواناب بسیار مـهم است. محاسبهی دقیق بارش-رواناب در سطح حوضه به شناخت مؤلفهها و متغیرهای شکلدهندهی آن و همچنین استفاده از یک مدل مناسب وابسته است. در این مطالعه، بارش-رواناب پیوستهی حوضهی شهرچای ارومیه با استفاده از مدل هیدرولوژیکی HEC-HMS شبیهسازی شد. برای این منظور ابتدا مدل حوضهی آبخیز با استفاده از نقشهی DEM منطقهی مور...
full textMy Resources
Journal title
volume 7 issue 21
pages 67- 70
publication date 2013-07
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023